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Kinemaitcs
I Diffractive pion production, νT → µπT

T T

π
ν

µ

I T is either proton or nucleus

I neutrino may be νµ ,νe

Eν = p·kν
mN

, ν =
p·qW

M , y =
p·qW
p·k

Q2 =−q2
W =4Eν (Eν −ν)sin2 θ

2
+O

(
m2

l

)

t = (p′−p)2 = ∆2 = tmin −∆2
⊥

I Diffractive kinematics, energy ν � νmin ∼ (Q2 +m2
π)RA

I In the small-ν dominant contribution comes from
resonances
MiniBooNE, SciBooNE, ...
More on this in talk by E. Paschos
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I High statistics

I Differential
cross-sections are
measured

I Proton and nuclear
targets (C, Fe, Pb)

I In the small-ν dominant contribution comes from
resonances
MiniBooNE, SciBooNE, ...
More on this in talk by E. Paschos
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Adler relation & PCAC

I PCAC Hypothesis: Opeartor relation which connects the
operators,

∂µAµ ∼m2
πφπ(x)

I For the case of small q2 ≈m2
l ≈ 0 and kµ ∼ qµ , so

lepton tensor may be cast to the form

Lµν = 2
Eν (Eν −ν)

ν2 qµqν +O
(
q2)+O

(
m2

l
)

I So the cross-section may be evaluated using the PCAC
hypothesis (S. Adler, 1966)

dσνT→lF

dνdQ2

∣∣∣∣
Q2=0

=
G 2

F
2π

f 2
π

Eν −ν

Eνν
σπT→F
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Rein-Sehgal corrections

I Rein, Sehgal offered an absorptive correction factor

dσνT→lF

dνdQ2

∣∣∣∣
Q2=0

=
G 2

F
2π

f 2
π

Eν −ν

Eνν
σπT→FFabs

Fabs = e−〈x〉/λ ,

λ
−1 = σin〈ρA〉

〈x〉 ≈ 3
4
RA

which takes into account nuclear effects.

I More accurate treatment should take into account the
nuclear effects in the Gribov-Glauber framework
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Why Adler relation needs improvements ?

I In real measurements, we have q2 6= 0, so Adler
contribution for longitudinal part requires extrapolation
(maybe up to a few GeV2).

I

Q2 = 4Eν (Eν −ν)sin2 θ

2
+O

(
m2

l
)
,

so for Eν ∼ 20 GeV, ν ∼ 10 GeV, selection
Q2 . 0.1 GeV2 requires θ . 2.2×10−2rad.

I Phenomenological approach: extrapolate with
formfactor

∼ m2
A

Q2 +m2
A

,

mA ∼ 1GeV
I Does not explain the value of mA, e.g. why mA 6= mπ ?

I In addition, we have contributions from transverse part
and from the vector part (O

(
q2) for small q2)
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Why Adler relation needs improvements ?

I In real measurements, we have q2 6= 0, so Adler
contribution for longitudinal part requires extrapolation
(maybe up to a few GeV2).

I In addition, we have contributions from transverse part
and from the vector part (O

(
q2) for small q2)

I For vector current:

d2σνp→lF

dν dQ2 =
G 2

4π2
|~q|
Eν

Q2

1− ε

[
σ

V
⊥
(
ν ,Q2)+ εσ

V
||
(
ν ,Q2)] ;

similar expression for σA
⊥
(
ν ,Q2

)



Absorptive corrections
Different structure for elastic scattering and meson
production

I For elastic meson scatterig they have a form

σ
πA
el ∼

∫
d2b

(
1− exp

(
−1
2

σπNTA(b)

))
;

M1

I For diffractive meson production they have a form

σπA→MA ∼
∫

dzρA(b,z)exp
(
−1
2

σπN

∫ z

−∞

dζ ρA(ζ )

)
×exp

(
−1
2

σMN

∫
∞

z
dζ ρA(ζ )

)
∼
∫

d2b

[
exp
(
−1

2σπNTA(b)
)
− exp

(
−1

2σMNTA(b)
)

σπN −σMN

]



Absorptive corrections
Different structure for elastic scattering and meson
production

I For elastic meson scatterig they have a form

σ
πA
el ∼

∫
d2b

(
1− exp

(
−1
2

σπNTA(b)

))
;

I For diffractive meson production they have a form

σπA→MA ∼
∫

dzρA(b,z)exp
(
−1
2

σπN

∫ z

−∞

dζ ρA(ζ )

)
×exp

(
−1
2

σMN

∫
∞

z
dζ ρA(ζ )

)
∼
∫

d2b

[
exp
(
−1

2σπNTA(b)
)
− exp

(
−1

2σMNTA(b)
)

σπN −σMN

]
M1 M2

z



Black disk limit
Adler relation is inconsistent with black disk limit: consider
single-pion production,

dσνT→lπT

dνdQ2

∣∣∣∣
Q2=0︸ ︷︷ ︸ =

G2
F

2π
f 2
π

Eν−ν

Eν ν
σπT→πT︸ ︷︷ ︸

off-forward diffraction, W → π elastic scattering, π → π

W

π

W

ππ

︸ ︷︷ ︸
∼ qµ

q2−mπ

(pions are suppressed

by lepton mass)



Black disk limit
Adler relation is inconsistent with black disk limit: consider
single-pion production,

dσνT→lπT

dνdQ2

∣∣∣∣
Q2=0︸ ︷︷ ︸ =

G2
F

2π
f 2
π

Eν−ν

Eν ν
σπT→πT︸ ︷︷ ︸

off-forward diffraction, W → π elastic scattering, π → π

∼ 2πR ∼ πR2

Energy dependence

in limit s → ∞:

∼ lns ∼ ln2 s



Black disk limit
Adler relation is inconsistent with black disk limit: consider
single-pion production,

dσνT→lπT

dνdQ2

∣∣∣∣
Q2=0︸ ︷︷ ︸ =

G2
F

2π
f 2
π

Eν−ν

Eν ν
σπT→πT︸ ︷︷ ︸Fabs

off-forward diffraction, W → π elastic scattering, π → π

∼ 2πR ∼ πR2

Rein-Sehgal factor ∼ exp(−const A1/3), does not solve the
discrepancy
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PCAC vs. pion dominance
Adler relation: replace W with π for Q2 = 0

dσνT→lF

dνdQ2

∣∣∣∣
Q2=0

=
G 2

F
2π

f 2
π

Eν −ν

Eνν
σπT→F

Pion dominance model:

Tµ (...)∼ qµ

q2−m2
π

+T non−pion
µ (...),

but lepton currents are
conserved, so

qµLµν = O (ml )

⇒contribution of pions is zero
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Barish et. al, 1979
⇒contribution of non-pions should exactly match the
contribution of pions
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PCAC vs. pion dominance

Adler relation: replace W with π for Q2 = 0
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dνdQ2
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Q2=0

=
G 2

F
2π

f 2
π

Eν −ν

Eνν
σπT→F

Pion dominance model:

Tµ (...)∼ qµ

q2−m2
π

+T non−pion
µ (...),

but lepton currents are
conserved, so

qµLµν = O (ml )

⇒contribution of pions is zero
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MiniBooNE, 2010
⇒contribution of non-pions should exactly match the
contribution of pions



Chiral symmetry & Adler relation

W

π

W

ππ

Figure: W may couple directly to quarks in the target or via
intermediate pion

L2 ≈
F 2

2

(
∂µ

~φ −~aµ

)2
+O

(
m,φ3,a3,a2

φ , ...
)
,

L
(1)

πN ≈ Ψ̄
(
iγµ∂µ +mN − i

gA

4
γµγ5

(
~aµ −∂µ

~φ
))

Ψ +O
(
m,φ3,a3,a2

φ , ...
)
.

T (a→π)
µ = Tππ(p,q)

(
qµqν

q2−m2
π

−gµν

)
Pν (p,∆) ,



Chiral symmetry & color dipole

W

π

W

ππ

W
q̄

q
πW

q̄

q

Figure: Relation between couplings π q̄q, Wq̄q,Wπ gurantees that
the amplitude remains transverse

T (a→π)
µ = Tππ(p,q)

(
qµqν

q2−m2
π

−gµν

)
Pν (p,∆) ,
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Color dipole and neutrino-proton interactions

The amplitude has a form T T

πν

µ
β

1− β

A aT→πT =
∫

dβdβ
′d2rd2r ′Ψ̄π

(
β
′, r ′
)
A d

T
(
β
′, r ′;β , r

)
Ψa (β , r) ,

I A d
T (β ′, r ′;β , r) universal object, depends only on the

target T . (We’ll discuss it on the next slides)
I Ψ̄π ,Ψa are the distribution amplitudes of the initial and

final states

I Earlier applications of color dipole model:
I Formulated for photon-proton and proton-nuclear

processes (vector current)
I Applications to processes with neutrinos (vector current)

I We are going to use color dipole for description of the
axial current
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Color dipole and neutrino-proton interactions

The amplitude has a form T T

πν

µ
β

1− β

A aT→πT =
∫

dβdβ
′d2rd2r ′Ψ̄π

(
β
′, r ′
)
A d

T
(
β
′, r ′;β , r

)
Ψa (β , r) ,

I A d
T (β ′, r ′;β , r) universal object, depends only on the

target T .
I Ψ̄π ,Ψa are the distribution amplitudes of the initial and

final states
I Earlier applications of color dipole model:

I Formulated for photon-proton and proton-nuclear
processes (vector current)

I Applications to processes with neutrinos (vector
current)

I electroweak DVCS (Machado 2007)
I charm/heavy meson production (Fiore, Zoller 2009;

Gay Ducati, Machado 2009)
I electroweak DIS (Fiore, Zoller 2005; Gay Ducati,

Machado 2007)

I We are going to use color dipole for description of the
axial current
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I A d
T (β ′, r ′;β , r) universal object, depends only on the

target T .
I Ψ̄π ,Ψa are the distribution amplitudes of the initial and

final states
I Earlier applications of color dipole model:

I Formulated for photon-proton and proton-nuclear
processes (vector current)

I Applications to processes with neutrinos (vector current)
I We are going to use color dipole for description of the

axial current
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Extension from vector to axial current

Extension of effective models from vector to axial current is
unsafe due to massless pions.
Example: extension of Generalized Vector meson Dominance
(GVMD) leads to Piketty-Stodolsky paradox:

σπp→πp 6= σπp→a1p

I VMD does not work for axial current, dominant
contributions comes from multimeson states
(ρπ,πππ, ...) (Belkov, Kopeliovich, 1986)

I In color dipole there is no such problems because in the
intermediate states we work in quark-gluon basis, not in
hadronic like in GVMD
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I VMD does not work for axial current, dominant
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Dipole scattering amplitude (I)

I Universal (depends on the target)

I In the small-r limit behaves like

A d (β , r)∼ r2

T T

πν

µ

I Its evolution is described by BK equation (Balitsky 1995;
Kovchegov 1999)

∂U (x⊥,y⊥)

∂ µ
=
∫

d2z⊥K0(x⊥,y⊥;z⊥)(U (x⊥,z⊥) +U (z⊥,y⊥)

− U (x⊥,y⊥) +U (x⊥,z⊥)U (z⊥,y⊥)) ,

I There are soft contribiutions, which correspond to
large-size dipoles.
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Dipole scattering amplitude (I)

I Universal (depends on the target)
I In the small-r limit behaves like

A d (β , r)∼ r2

(color transparency)

T T

πν

µ

I Its evolution is described by BK equation (Balitsky 1995;
Kovchegov 1999)

∂U (x⊥,y⊥)

∂ µ
=
∫

d2z⊥K0(x⊥,y⊥;z⊥)(U (x⊥,z⊥) +U (z⊥,y⊥)

− U (x⊥,y⊥) +U (x⊥,z⊥)U (z⊥,y⊥)) ,

I There are soft contribiutions, which correspond to
large-size dipoles.
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Dipole scattering amplitude (I)
I Universal (depends on the target)
I In the small-r limit behaves like

A d (β , r)∼ r2
T T

πν

µ

I Its evolution is described by BK equation (Balitsky 1995;
Kovchegov 1999)
∂U (x⊥,y⊥)

∂ µ
=
∫

d2z⊥K0(x⊥,y⊥;z⊥)(U (x⊥,z⊥) +U (z⊥,y⊥)

− U (x⊥,y⊥) +U (x⊥,z⊥)U (z⊥,y⊥)) ,

U (x⊥,y⊥)- dipole propagator,
∼A d (β , r = y⊥− x⊥,b = x⊥+y⊥

2

)
; µ ∼ ln(1/x).

K0(x⊥,y⊥;z⊥)∼ αs

2π

(x⊥− y⊥)2

(x⊥− z⊥)2 (z⊥− y⊥)2 +O
(
α

2
s
)

The equation is nonlinear, solution is numerical

I There are soft contribiutions, which correspond to
large-size dipoles.
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Dipole scattering amplitude (I)

I Universal (depends on the target)
I In the small-r limit behaves like

A d (β , r)∼ r2
T T

πν

µ

I Its evolution is described by BK equation (Balitsky 1995;
Kovchegov 1999)

∂U (x⊥,y⊥)

∂ µ
=
∫

d2z⊥K0(x⊥,y⊥;z⊥)(U (x⊥,z⊥) +U (z⊥,y⊥)

− U (x⊥,y⊥) +U (x⊥,z⊥)U (z⊥,y⊥)) ,

I There are soft contribiutions, which correspond to
large-size dipoles.
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Dipole scattering amplitude (II)
I GBW parameterization (Golec-Biernat, Wusthoff 1998)

σ(x , r) = σ0(x)

(
1− exp

(
− r2

4R2
0 (x)

))
,

R0(x)∼
(

x
x0

)λ/2

Free parameters fixed from fits to DIS, photoabsorption,
...
Has built-in scaling, but for Q2 = 0 xB ≡ 0⇒ this
parameterization is not applicable.

I b-SAT Parameterization(Iancu, Itakura, Munier 2004,
...)

σ(x , r) = σ0×

 N0

(
rQs
2

)2
(

γs+ 1
kλ ln(1/x) ln 2

rQs

)
, rQs≤2

1− exp
(
−A ln2 (BrQs)

)
, rQs > 2

Qs(x)∼
(x0

x

)λ/2
exp
(
− b2

2C

)
Based on numerical solution of the BK equation
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Dipole scattering amplitude (II)
I GBW parameterization (Golec-Biernat, Wusthoff 1998)

σ(x , r) = σ0(x)

(
1− exp

(
− r2

4R2
0 (x)

))
,

R0(x)∼
(

x
x0

)λ/2

I KST parameterization (Kopeliovich, Schafer, Tarasov
2000, ...)

σ(s, r) = σ0(s)

(
1− exp

(
− r2

4R2
0 (s)

))
,

R0(s)∼
(

s0
s1 + s

)λ/2

Good for low-Q2, but no scaling for large Q2

I b-SAT Parameterization(Iancu, Itakura, Munier 2004,
...)

σ(x , r) = σ0×

 N0

(
rQs
2

)2
(

γs+ 1
kλ ln(1/x) ln 2

rQs

)
, rQs≤2

1− exp
(
−A ln2 (BrQs)

)
, rQs > 2

Qs(x)∼
(x0

x

)λ/2
exp
(
− b2

2C

)
Based on numerical solution of the BK equation
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Dipole scattering amplitude (II)
I GBW parameterization (Golec-Biernat, Wusthoff 1998)
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(
1− exp

(
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4R2
0 (x)

))
,
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(

x
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)λ/2
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s
,
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Distribution amplitudes from the Instanton
Vacuum Model
Why IVM ?

I The model is valid for low virtualities Q2

I The model has built-in chiral symmetry
I Effective action :

S =
∫

d4x
(
2Φ†(x)Φ(x)− ψ̄

(
p̂ + v̂ + âγ5−m− cL̄f ⊗Φ ·Γm⊗ fL

)
ψ

)
,

I may be rewritten as NJL with nonlocal interactions
(nonlocality from instanton shape)

I has only two parameters (average instanton size
ρ ∼ 1/600MeV and average distance R ∼ 1/200MeV ),
but reproduces the low-energy constants in chiral
lagrangian with reasonable precision.
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Appendix

Some results from the instanton vacuum model

I Degrees of freedom: mesons and constituent quarks

I The quarks have dynamical mass
I All quark-meson vertices are nonlocal
I Formal expansion parameter 1/Nc

I All scale-dependent quantities (condensates, DAs etc.)
are given at the scale 1/ρ ∼600 MeV

I For large momenta pQCD is restored
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Appendix

Some results from the instanton vacuum model
I Degrees of freedom: mesons and constituent quarks
I The quarks have dynamical mass

Data points: P. Bowman et. al., 2004 (lattice), curve:
D.Diakonov et. al., 1986 (IVM). No fitting !
Quark propagator

S(p) =
1

p̂+ iM(p)

I All quark-meson vertices are nonlocal
I Formal expansion parameter 1/Nc
I All scale-dependent quantities (condensates, DAs etc.)

are given at the scale 1/ρ ∼600 MeV
I For large momenta pQCD is restored
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Some results from the instanton vacuum model
I Degrees of freedom: mesons and constituent quarks
I The quarks have dynamical mass

I All quark-meson vertices are nonlocal
I Formal expansion parameter 1/Nc
I All scale-dependent quantities (condensates, DAs etc.)

are given at the scale 1/ρ ∼600 MeV
I For large momenta pQCD is restored



Distribution amplitudes of pion

Pion distribution amplitudes (P. Ball et al, 2006)

〈
0
∣∣ψ̄ (y)γµγ5ψ (x)

∣∣π(q)
〉

= ifπ
∫ 1

0
du e i(up·y+ūp·x)×

×
(
pµφ2;π(u) +

1
2

zµ

(p · z)
ψ4;π(u)

)
,

〈0 |ψ̄ (y)γ5ψ (x)|π(q)〉 = −ifπ
m2

π

mu +md

∫ 1

0
du e i(up·y+ūp·x)

φ
(p)
3;π (u).

〈
0
∣∣ψ̄ (y)σµνγ5ψ (x)

∣∣π(q)
〉

= − i
3
fπ

m2
π

mu +md

∫ 1

0
du e i(up·y+ūp·x)×

× 1
p · z

(
pµzν −pνzµ

)
φ

(σ)
3;π (u),
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Distribution amplitude of pion

I Most “popular” leading twist contribution is φ2;π

(
x ; µ2)

0,0 0,2 0,4 0,6 0,8 1,0
0,0

0,4

0,8

1,2

1,6

2,0

(x
)

x

(A. Dorokhov 2002)
I We have to take into account all the DAs in order not to

kill the chiral symmetry



Distribution amplitudes of axial meson
Axial DAs (K.-C. Yang 2007)

〈
0
∣∣ψ̄ (y)γµ γ5ψ (x)

∣∣A(q)
〉

= ifAmA

∫ 1

0
due i(up·y+ūp·x)×

×
(

pµ

e(λ) ·z
p ·z Φ||(u) +e(λ=⊥)

µ g (a)
⊥ (u)− 1

2
zµ

e(λ) ·z
(p ·z)2

m2
Ag3(u)

)
,

〈
0
∣∣ψ̄ (y)γµ ψ (x)

∣∣A(q)
〉

= −ifAmAεµνρσ e(λ)
ν pρzσ

∫ 1

0
due i(up·y+ūp·x) g (v)

⊥ (u)

4

〈
0
∣∣ψ̄ (y)σµν γ5ψ (x)

∣∣A(q)
〉

= f ⊥A
∫ 1

0
due i(up·y+ūp·x)

(
e(λ=⊥)

[µ pν]Φ⊥(u)

+
e(λ) ·z
(p ·z)2

m2
Ap[µzν]h

(t)
|| (u) +

1
2
e(λ)

[µ zν]
m2

A
p ·z h3(u)

)
,

〈0 |ψ̄ (y)γ5ψ (x)|A(q)〉 = f ⊥A m2
Ae(λ) ·z

∫ 1

0
due i(up·y+ūp·x)

h(p)
|| (u)

2
.
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Result for the νp→ µ−π+p cross-section
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Figure: Differential cross-section dσ/dνdtdQ2 for different
neutrino energies Eν .
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Result for the νp→ µ−π+p cross-section
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Figure: Total cross-section as a function of the neutrino energy Eν .
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Result for the νp→ µ−π+p cross-section

Charged Current Single Pion Production
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Figure: Total cross-section as a function of the neutrino energy
Eν .Compilation of experimental data from Minerva proposal, 2004

Agreement for energies Eν > 10 GeV, problem for Eν < 10
GeV
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Result for the νp→ µ−π+p cross-section

Charged Current Single Pion Production
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Figure: Total cross-section as a function of the neutrino energy
Eν .Compilation of experimental data from Minerva proposal, 2004

Low-energy region is dominated by ∆(1232)
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Result for the νp→ µ−π+p cross-section

Charged Current Single Pion Production
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Figure: Total cross-section as a function of the neutrino energy
Eν .Compilation of experimental data from Minerva proposal, 2004

Difference between NEUGEN and color dipole: cross-section
is slowly growing for high energies
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Result for the νp→ µ−π+p cross-section

Charged Current Single Pion Production
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Figure: Total cross-section as a function of the neutrino energy
Eν .Compilation of experimental data from Minerva proposal, 2004

Total cross-section is not very informative, it is dominated by
∆-resonance, differential cross-section would give much more
information
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Appendix

Coherent neutrino-nuclear scattering
I We use an approach suggested in (B. Kopeliovich, A.

Schäfer, A. Tarasov, 2000)

q z
1

q

z

a

z

b

πWπW

Equation of motion of dipole in the nuclear media:

i
∂G (z2, r2;z1, r1)

∂z2
=

=

{
− ∆r2
2να(1−α)

− iσdN(r)ρA(z2, r2)

}
G (z2, r2;z1, r1)

I Dipoles can change size during propagation in media

I Two different coherence lengths: coherence length of
the pion and effective axial meson

lπc =
2ν

m2
π +Q2 , lac =

2ν

m2
a +Q2 .

I For large Q2, lπc ≈ lac , so this case is similar to
photon-nuclear processes, we have only two regimes:
lc � RA and lc � RA.

I For small m2
π . Q2�m2

a the two scales are essentially
different, lac � lπc , so there are three regimes depending
on relations between RA and lac , lπc .



Diffractive
neutrino-

production of
pions

M. Siddikov

Historical
overview
Process &
kinematics
Adler relation and
beyond

Evaluation in
color dipole
model
Evaluation in the
color dipole model
Evaluation on the
nuclear target

Appendix

Coherent neutrino-nuclear scattering
I We use an approach suggested in (B. Kopeliovich, A.

Schäfer, A. Tarasov, 2000)

q z
1

q

z

a

z

b

πWπW

I Two different coherence lengths: coherence length of
the pion and effective axial meson

lπc =
2ν

m2
π +Q2 , lac =

2ν

m2
a +Q2 .

I For large Q2, lπc ≈ lac , so this case is similar to
photon-nuclear processes, we have only two regimes:
lc � RA and lc � RA.

I For small m2
π . Q2�m2

a the two scales are essentially
different, lac � lπc , so there are three regimes depending
on relations between RA and lac , lπc .



Diffractive
neutrino-

production of
pions

M. Siddikov

Historical
overview
Process &
kinematics
Adler relation and
beyond

Evaluation in
color dipole
model
Evaluation in the
color dipole model
Evaluation on the
nuclear target

Appendix

Coherent neutrino-nuclear scattering
I We use an approach suggested in (B. Kopeliovich, A.

Schäfer, A. Tarasov, 2000)

q z
1

q

z

a

z

b

πWπW

I Two different coherence lengths: coherence length of
the pion and effective axial meson

lπc =
2ν

m2
π +Q2 , lac =

2ν

m2
a +Q2 .

I For large Q2, lπc ≈ lac , so this case is similar to
photon-nuclear processes, we have only two regimes:
lc � RA and lc � RA.

I For small m2
π . Q2�m2

a the two scales are essentially
different, lac � lπc , so there are three regimes depending
on relations between RA and lac , lπc .



Diffractive
neutrino-

production of
pions

M. Siddikov

Historical
overview
Process &
kinematics
Adler relation and
beyond

Evaluation in
color dipole
model
Evaluation in the
color dipole model
Evaluation on the
nuclear target

Appendix
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I We use an approach suggested in (B. Kopeliovich, A.
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Coherent neutrino-nuclear scattering (contd.)

q z
1

q

z

a

z

b

πWπW

I lac � lπc � RA: small energy, nuclear effects are due to
Fermi motion (EMC-effect; and this is not diffractive
production).

I lac � RA� lπc : moderate energy, nuclear effects are
present; Adler relation is valid for small Q2, σ ∼ A2/3

I RA� lac � lπc : absorptive corrections are large, Adler
relation is not valid even for Q2 = 0, σ ∼ A1/3
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Coherent neutrino-nuclear scattering (contd.)

q z
1

q

z

a

z

b

πWπW

I lac � lπc � RA: small energy, nuclear effects are due to
Fermi motion (EMC-effect; and this is not diffractive
production).

I lac � RA� lπc : moderate energy, nuclear effects are
present; Adler relation is valid for small Q2, σ ∼ A2/3

I RA� lac � lπc : absorptive corrections are large, Adler
relation is not valid even for Q2 = 0, σ ∼ A1/3
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Coherent neutrino-nuclear scattering (contd.)
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I lac � lπc � RA: small energy, nuclear effects are due to
Fermi motion (EMC-effect; and this is not diffractive
production).

I lac � RA� lπc : moderate energy, nuclear effects are
present; Adler relation is valid for small Q2, σ ∼ A2/3

I RA� lac � lπc : absorptive corrections are large, Adler
relation is not valid even for Q2 = 0, σ ∼ A1/3



Result for the νA→ lπ+A differential
cross-section
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Figure: Ratio of cross-sections on the nucleus and proton.

Adler relation (AR) is valid for energies < 10 GeV; for high
energies (ν ≥ 10 GeV) AR is broken due to shadowing
corrections
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Is this behaviour model dependent ?

Cross-check in a simple model:
I Assume Adler relation works for nucleon for Q2 = 0
I Use for extrapolation to nonzero Q2 factor

∼ m2
A

m2
A +Q2

I Evaluate the shadowing in standard Gribov-Glauber
approach
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Figure: Ratio of cross-sections on the nuclei and proton.

Results are similar to color dipole, Adler relation works only
in the region ν ≤ 10 GeV
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Appendix

Conclusion

I We have shown that the Adler relation cannot always be
correct for the neutrino-nuclear processes. For energies
ν & 10 GeV–shadowing (absorptive) corrections are
important

I We evaluated the results in color dipole model not using
Adler relation for the neutrino-proton and
neutrino-nuclear collisions. Our results are valid in the
region ν ≥ (Q2 +m2

π)RA
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Conclusion

I We have shown that the Adler relation cannot always be
correct for the neutrino-nuclear processes. For energies
ν & 10 GeV–shadowing (absorptive) corrections are
important

I We evaluated the results in color dipole model not using
Adler relation for the neutrino-proton and
neutrino-nuclear collisions. Our results are valid in the
region ν ≥ (Q2 +m2

π)RA



Diffractive
neutrino-

production of
pions

M. Siddikov

Historical
overview
Process &
kinematics
Adler relation and
beyond

Evaluation in
color dipole
model
Evaluation in the
color dipole model
Evaluation on the
nuclear target

Appendix

I Thank You for your attention !
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Appendix

Kinematics

I Vector current contribution to kinematics:

d2σνp→lF

dν dQ2 =
G 2

4π2
|~q|
Eν

Q2

1− ε

[
σ

V
⊥
(
ν ,Q2)+ εσ

V
||
(
ν ,Q2)] ;

ε =
4Eν (Eν −ν)−Q2

4Eν (Eν −ν) +Q2 +2ν2

σ
V
||,⊥
(
ν ,Q2)=

ε
||,⊥
µ (q)ε

||,⊥
ν (q)Vµν (q)√
ν2 +q2
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